14 research outputs found

    Functional characterization and structure-guided mutational analysis of the transsulfuration enzyme cystathionine γ-lyase from toxoplasma gondii

    Get PDF
    Sulfur-containing amino acids play essential roles in many organisms. The protozoan parasite Toxoplasma gondii includes the genes for cystathionine β-synthase and cystathionine γ-lyase (TgCGL), as well as for cysteine synthase, which are crucial enzymes of the transsulfuration and de novo pathways for cysteine biosynthesis, respectively. These enzymes are specifically expressed in the oocyst stage of T. gondii. However, their functionality has not been investigated. Herein, we expressed and characterized the putative CGL from T. gondii. Recombinant TgCGL almost exclusively catalyses the α,γ-hydrolysis of L-cystathionine to form L-cysteine and displays marginal reactivity toward L-cysteine. Structure-guided homology modelling revealed two striking amino acid differences between the human and parasite CGL active-sites (Glu59 and Ser340 in human to Ser77 and Asn360 in toxoplasma). Mutation of Asn360 to Ser demonstrated the importance of this residue in modulating the specificity for the catalysis of α,β-versus α,γ-elimination of L-cystathionine. Replacement of Ser77 by Glu completely abolished activity towards L-cystathionine. Our results suggest that CGL is an important functional enzyme in T. gondii, likely implying that the reverse transsulfuration pathway is operative in the parasite; we also probed the roles of active-site architecture and substrate binding conformations as determinants of reaction specificity in transsulfuration enzymes

    Wound contraction effects and antibacterial properties of Tualang honey on full-thickness burn wounds in rats in comparison to hydrofibre

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Full-thickness burn wounds require excision and skin grafting. Multiple surgical procedures are inevitable in managing moderate to severe full-thickness burns. Wound bed preparations prior to surgery are necessary in order to prevent wound infection and promote wound healing. Honey can be used to treat burn wounds. However, not all the honey is the same. This study aims to evaluate the wound contraction and antibacterial properties of locally-produced <it>Tualang </it>honey on managing full-thickness burn wounds <it>in vivo</it>.</p> <p>Methods</p> <p>Thirty-six female <it>Sprague Dawley </it>rats were randomly divided into three groups. Under anaesthesia, three full-thickness burn wounds were created on the dorsum of the rats. The full-thickness burn wounds were inoculated with a specific organism (10<sup>4</sup>), namely <it>Pseudomonas aeruginosa </it>(n = 12), <it>Klebsiella pneumoniae </it>(n = 12), or <it>Acinetobacter baumannii </it>(n = 12). The three burn wounds were dressed with <it>Tualang </it>honey, hydrofibre and hydrofibre silver respectively. Swab samples were obtained every 3 days (day 3, 6, 9, 12, 15, 18 and 21) for quantitative and semi-quantitative microbiological analyses. Clinical assessments, including observations concerning the appearance and wound size, were measured at the same time.</p> <p>Results</p> <p>There was a rapid 32.26% reduction in wound size by day 6 (<it>p </it>= 0.008) in the <it>Tualang </it>honey-treated wounds, and 49.27% by day 15 (<it>p </it>= 0.005). The wounds remained smaller by day 18 (<it>p </it>< 0.032). <it>Tualang </it>honey-treated rats demonstrated a reduction in bacterial growth in <it>Pseudomonas aeruginosa </it>inoculated wounds (<it>p </it>= 0.005). However, hydrofibre silver and hydrofibre-treated wounds are superior to honey-treated wounds with <it>Acinetobacter baumannii </it>(<it>p </it>= 0.035). There was no statistical significant of antibacterial property in <it>Klebsiella pneumonia </it>inoculated wounds.</p> <p>Conclusions</p> <p><it>Tualang </it>honey has better results with regards to its control of <it>Pseudomonas aeruginosa </it>and its wound contraction effects on full-thickness burn wound <it>in vivo</it>.</p
    corecore